Part Number Hot Search : 
CMXD6001 Z86E40 ARF466BG 579545 MJD47T4G D1764 SA576D C1458
Product Description
Full Text Search
 

To Download IR21084SPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  typical connection half-bridge driver features ? floating channel designed for bootstrap operation fully operational to +600v tolerant to negative transient voltage dv/dt immune ? gate drive supply range from 10 to 20v ? undervoltage lockout for both channels ? 3.3v, 5v and 15v input logic compatible ? cross-conduction prevention logic ? matched propagation delay for both channels ? high side output in phase with hin input ? low side output out of phase with lin input ? logic and power ground +/- 5v offset. ? internal 540ns dead-time, and programmable up to 5us with one external r dt resistor (ir21084) ? lower di/dt gate driver for better noise immunity ? available in lead-free ir21084 ir2108 v cc v b v s ho lo com hin lin lin hin up to 600v to load v cc hin up to 600v to load v cc v b v s ho lo com hin dt v ss lin v cc lin v ss r dt data sheet no. pd60161-r ir2108 ( 4 ) ( s ) & (pbf) www.irf.com 1 (refer to lead assignments for correct pin configuration). this/these diagram(s) show electrical connections only. please refer to our application notes and designtips for proper circuit board layout. packages 14-lead pdip ir21084 8-lead soic ir2108s 8-lead pdip ir2108 14-lead soic ir21084s description the ir2108(4)(s) are high voltage, high speed power mosfet and igbt driv ers with depen- dent high and low side referenced output channels. proprietary hvic and latch immune cmos technologies enable ruggedized monolithic construction. the logic input is compatible with standard cmos or lsttl output, down to 3.3v logic. the output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. the floating channel can be used to drive an n-channel power mosfet or igbt in the high side configuration which operates up to 600 volts. part input logic cross- conduction prevention logic dead-time ground pins 2106/2301 com 21064 hin/lin no none vss/com 2108 internal 540ns com 21084 hin/lin yes programmable 0.54~5 s vss/com 2109/2302 internal 540ns com 21094 in/sd yes programmable 0.54~5 s vss/com 2106/2301//2108//2109/2302/2304 feature comparison 2304 hin/lin yes internal 100ns com
2 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) symbol definition min. max. units v b high side floating absolute voltage -0.3 625 v s high side floating supply offset voltage v b - 25 v b + 0.3 v ho high side floating output voltage v s - 0.3 v b + 0.3 v cc low side and logic fixed supply voltage -0.3 25 v lo low side output voltage -0.3 v cc + 0.3 dt programmable dead-time pin voltage (ir21084 only) v ss - 0.3 v cc + 0.3 v in logic input voltage (hin & lin )v ss - 0.3 v cc + 0.3 v ss logic ground (ir21084 only) v cc - 25 v cc + 0.3 dv s /dt allowable offset supply voltage transient ? 50 v/ns p d package power dissipation @ t a +25  c (8 lead pdip) ? 1.0 (8 lead soic) ? 0.625 (14 lead pdip) ? 1.6 (14 lead soic) ? 1.0 rth ja thermal resistance, junction to ambient (8 l ead p dip) ? 125 (8 lead soic) ? 200 (14 lead pdip) ? 75 (14 lead soic) ? 120 t j junction temperature ? 150 t s storage temperature -50 150 t l lead temperature (soldering, 10 seconds) ? 300 absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage param- eters are absolute voltages referenced to com. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. note 1: logic operational for v s of -5 to +600v. logic state held for v s of -5v to -v bs . (please refer to the design tip dt97-3 for more details). v recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. the v s and v ss offset rating are tested with all supplies biased at 15v differential.  c  c/w w vb high side floating supply absolute voltage v s + 10 v s + 20 v s high side floating supply offset voltage note 1 600 v ho high side floating output voltage v s v b v cc low side and logic fixed supply voltage 10 20 v lo low side output voltage 0 v cc v in logic input voltage ir2108 com v cc ir21084 v ss v cc dt programmable dead-time pin voltage (ir21084 only) v ss v cc v ss logic ground (ir21084 only) -5 5 t a ambient temperature -40 125 v symbol definition min. max. units  c
www.irf.com 3 ir2108 ( 4 ) ( s ) & (pbf) dynamic electrical characteristics v bias (v cc , v bs ) = 15v, v ss = com, c l = 1000 pf, t a = 25  c, dt = vss unless otherwise specified. static electrical characteristics v bias (v cc , v bs ) = 15v, v ss = com, dt= v ss and t a = 25  c unless otherwise specified. the v il , v ih and i in parameters are referenced to v ss /com and are applicable to the respective input leads: hin and lin. the v o , i o and ron parameters are referenced to com and are applicable to the respective output leads: ho and lo. symbol definition min. typ. max . units test conditions v ih logic ?1? input voltage for hin & logic ?0? for lin 2.9 ? ? v cc = 10v to 20v v il logic ?0? input voltage for hin & logic ?1? for lin ? ? 0.8 v cc = 10v to 20v v oh high level output voltage, v bias - v o ? 0.8 1.4 i o = 20 ma v ol low level output voltage, v o ? 0.3 0.6 i o = 20 ma i lk offset supply leakage current ? ? 50 v b = v s = 600v i qbs quiescent v bs supply current 20 75 130 v in = 0v or 5v i qcc quiescent v cc supply current 0.4 1.0 1.6 ma v in = 0v or 5v rdt=0 i in+ logic ?1? input bias current ? 5 20 hin = 5v, lin = 0v i in- logic ?0? input bias current ? ? 2 hin = 0v, lin = 5v v ccuv+ v cc and v bs supply undervoltage positive going 8.0 8.9 9.8 v bsuv+ threshold v ccuv- v cc and v bs supply undervoltage negative going 7.4 8.2 9.0 v bsuv- threshold v ccuvh hysteresis 0.3 0.7 ? v bsuvh i o+ output high short circuit pulsed current 120 200 ? v o = 0v, pw 10  s i o- output low short circuit pulsed current 250 350 ? v o = 15v, pw 10  s v  a  a v ma symbol definition min. typ. max. units test conditions t on turn-on propagation delay ? 220 300 v s = 0v t off turn-off propagation delay ? 200 280 v s = 0v or 600v mt delay matching | t on - t off | ?0 30 t r turn-on rise time ? 150 220 v s = 0v t f turn-off fall time ? 50 80 v s = 0v dt deadtime: lo turn-off to ho turn-on(dt lo-ho) & 400 540 680 rdt= 0 ho turn-off to lo turn-on (dt ho-lo) 4 5 6 usec rdt = 200k (ir21084) mdt deadtime matching = | dt lo-ho - dt ho-lo | ? 0 60 rdt=0 ? 0 600 rdt = 200k (ir21084) nsec nsec
4 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) functional block diagram 21084 lin +5v uv detect delay com lo vcc hin dt vss vs ho vb pulse filter hv level shifter r r s q uv detect deadtime & shoot-through prevention pulse generator vss/com level shift vss/com level shift 2108 lin +5v uv detect delay com lo vcc hin dt vss vs ho vb pulse filter hv level shifter r r s q uv detect deadtime & shoot-through prevention pulse generator vss/com level shift vss/com level shift
www.irf.com 5 ir2108 ( 4 ) ( s ) & (pbf) 14 lead pdip 14 lead soic ir21084 ir21084s lead assignments 8 lead pdip 8 lead soic 1 2 3 4 8 7 6 5 v cc hin lin com v b ho v s lo 1 2 3 4 8 7 6 5 v cc hin lin com v b ho v s lo 1 2 3 4 5 6 7 1 4 13 12 11 10 9 8 v cc hin lin dt vss com lo v b ho v s 1 2 3 4 5 6 7 1 4 13 12 11 10 9 8 v cc hin lin dt vss com lo v b ho v s lead definitions symbol description hin logic input for high side gate driver output (ho), in phase (referenced to com for ir2108 and vss for ir21084) logic input for low side gate driver output (lo), out of phase (referenced to com for ir2108 and vss for ir21084) dt programmable dead-time lead, referenced to vss. (ir21084 only) vss logic ground (21084 only) v b high side floating supply ho high side gate driver output v s high side floating supply return v cc low side and logic fixed supply lo low side gate driver output com low side return lin ir2108 ir2108s
6 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) figure 1. input/output timing diagram figure 2. switching t ime waveform definitions lin ho lo hin figure 3. deadtime waveform definitions hin lin ho 50% 50% 90% 10% lo 90% 10% dt lo-ho dt lo-ho mdt= - dt ho-lo dt ho-lo hin lin 50% 50% 50% 50% t r t on t f t off lo 90% 90% 10% 10% t r t on t f t off ho 90% 90% 10% 10%
www.irf.com 7 ir2108 ( 4 ) ( s ) & (pbf) 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-on propagation delay (ns ) typ. max . figure 4a. turn-on propagation delay vs. tem perature 0 100 200 300 400 500 10 12 14 16 18 20 v bias supply voltage (v) turn-on propagation delay (ns ) figure 4b. turn-on propagation delay vs. supply voltage t yp . max . 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off propagation delay (ns) max . typ. figure 5a. turn-off propagation delay vs.temperature 0 100 200 300 400 500 10 12 14 16 18 20 v bias supply voltage (v) turn-off propagation delay (ns) figure 5b. turn-off propagation delay vs. supply voltage typ. max .
8 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-on rise time (ns ) max . typ. figure 6a.turn-on rise time vs. tem perature 0 100 200 300 400 500 10 12 14 16 18 20 v bias supply voltage (v) turn-on rise time (ns ) figure 6b. turn-on rise time vs. supply voltage typ. max . 0 50 100 150 200 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off fall time (ns) max . typ. figure 7a. turn-off fall tim e vs. temperature 0 50 100 150 200 10 12 14 16 18 20 v bias supply voltage (v) turn-off fall time (ns) figure 7b. turn-off fall time vs. supply voltage typ. max .
www.irf.com 9 ir2108 ( 4 ) ( s ) & (pbf) 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) deadtime (ns) figure 8a. deadtim e vs. tem perature mi n. t yp . max . 200 400 600 800 1000 10 12 14 16 18 20 v bias supply voltage (v) deadtime (ns) figure 8b. deadtime vs. supply voltage max . typ. mi n. 0 1 2 3 4 5 6 7 0 50 100 150 200 r dt (k ? ) deadtime ( s) figure 8c. deadtim e vs . r dt (ir21084 only) t yp . max . mi n. 0 1 2 3 4 5 6 7 8 -50 -25 0 25 50 75 100 125 temperature ( o c) input voltage (v) max . figure 9a. logic "1" input voltage vs. tem perature
10 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) 0 1 2 3 4 5 6 7 8 10 12 14 16 18 20 v cc supply voltage (v) input voltage (v) figure 9b. logic "1" input voltage vs. supply voltage max . 0.0 0.8 1.6 2.4 3.2 4.0 -50 -25 0 25 50 75 100 125 temperature ( o c) input voltage (v) figure 10a. logic "0" input voltage vs. tem perature mi n. 0.0 0.8 1.6 2.4 3.2 4.0 10 12 14 16 18 20 v cc supply voltage (v) input voltage (v) figure 10b. logic "0" input voltage vs. supply voltage mi n. 0 1 2 3 4 -50 -25 0 25 50 75 100 125 temperature ( o c) high level output voltage (v) figure 11a. high level output vs. temperature typ. max .
www.irf.com 11 ir2108 ( 4 ) ( s ) & (pbf) 0 1 2 3 4 10 12 14 16 18 20 v cc supply voltage (v) high level output voltage (v ) figure 11b. high level output vs. supply voltage typ. max . 0 0.3 0.6 0.9 1.2 1.5 -50 -25 0 25 50 75 100 125 temperature ( o c) low level output voltage (v) figure 12a. low level output vs . te m pe ratur e t yp . max . 0 0.3 0.6 0.9 1.2 1.5 10 12 14 16 18 20 v cc supply voltage (v) low level output voltage (v) figure 12b. low level output vs. supply voltage typ. max . 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) offset supply leakage current ( a) max . figure 13a. offset supply leakage current vs. temperature
12 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) 0 100 200 300 400 500 0 100 200 300 400 500 600 v b boost voltage (v) offset supply leakage current ( a) max . figure 13b. offset supply leakage current vs. tem perature 0 100 200 300 400 -50 -25 0 25 50 75 100 125 temperature ( o c) v bs supply current ( a) t yp . max . figure 14a. v bs supply current vs. tem perature mi n . 0 100 200 300 400 10 12 14 16 18 20 v bs supply voltage (v) v bs supply current ( a) figure 14b. v bs supply current vs. supply voltage t yp . max . mi n . 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -50 -25 0 25 50 75 100 125 temperature ( o c) vcc supply current (ma) figure 15a. v cc supply current vs. tem perature m a x. typ. mi n.
www.irf.com 13 ir2108 ( 4 ) ( s ) & (pbf) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 10 12 14 16 18 20 v cc supply voltage (v) v cc supply current (ma) figure 15b. v cc supply current vs. supply voltage max . typ. mi n. 0 10 20 30 40 50 60 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input current ( a) t yp . max . figure 16a. logic "1" input current vs. temperature 0 10 20 30 40 50 60 10 12 14 16 18 20 v cc supply voltage (v) logic "1" input current ( a) figure 16b. logic "1" input current vs. supply voltage max . typ. 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input current ( a) figure 17a. logic "0" input current vs. tem perature max .
14 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) 0 1 2 3 4 5 10 12 14 16 18 20 v cc supply voltage (v) logic "0" input current ( a) figure 17b. logic "0" input current vs. supply voltage max . 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc uvlo threshold (+) (v) typ. max . figure 18. v cc undervoltage threshold (+) vs. tem perature mi n. 6 7 8 9 10 11 -50-250 255075100125 temperature ( o c) vcc uvlo threshold (-) (v) typ. max . figure 19. v cc undervoltage threshold (-) vs. tem perature mi n. 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v bs uvlo threshold (+) (v) typ. max . figure 20. v bs undervoltage threshold (+) vs. tem perature mi n.
www.irf.com 15 ir2108 ( 4 ) ( s ) & (pbf) 6 7 8 9 10 11 -50 -25 0 25 50 75 100 125 temperature ( o c) v bs uvlo threshold (-) (v) typ. m a x. figure 21. v bs undervoltage threshold (-) vs. temperature mi n. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) output source current ( a) typ. figure 22a. output source current vs. temperature mi n. 0 100 200 300 400 500 10 12 14 16 18 20 v bias supply voltage (v) output source current ( a) figure 22b. output source current vs. supply voltage typ. mi n. 0 100 200 300 400 500 600 -50 -25 0 25 50 75 100 125 temperature ( o c) output sink current (ma ) typ. figure 23a. output sink current vs. tem perature mi n.
16 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) 0 100 200 300 400 500 600 10 12 14 16 18 20 v bias supply voltage (v) output sink current ( a) figure 23b. output sink current vs. supply voltage typ. mi n. -10 -8 -6 -4 -2 0 10 12 14 16 18 20 v bs flouting supply voltage (v) v s offset supply voltage (v) figure 24. maxim um v s ne g ative off s e t vs. supply voltage typ. 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temprature ( o c) 70v figure 25. ir2108 vs. frequency (irfbc20), r gate =33 , v cc =15v 140v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) figure 26. ir2108 v s. frequency (irfbc30) , r gate =22 , v cc =15v 140v 0v 70v
www.irf.com 17 ir2108 ( 4 ) ( s ) & (pbf) 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 27. ir2108 vs. frequency (irfbc40), r gate =15 , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) figure 28. ir2108 vs. frequency (irfpe50), r gate =10 , v cc =15v 0v 1 40v 70v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) figure 29. ir21084 vs. frequency (irfbc20), r gate =33 , v cc =15v 140v 0v 70v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 1 40v 70v 0v figure 30. ir21084 vs. frequency (irfbc30), r gate =22 , v cc =15v
18 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 31. ir21084 vs. frequency (irfbc40), r gate =15 , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 70v 0v figure 32. ir21084 vs. frequency (irfpe50), r g ate =10 , v cc =15v 1 4 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 34. ir2108s vs. frequency (irfbc30), r gate =22 , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) figure 33. ir2108s vs. frequency (irfbc20), r gate =33 , v cc =15v 0v 70v 1 40v
www.irf.com 19 ir2108 ( 4 ) ( s ) & (pbf) 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 0v figure 35. ir2108s vs. frequency (irfbc40), r gate =15 , v cc =15v 14 0 v 7 0 v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) tempreture ( o c) figure 36. ir2108s vs. frequency (irfpe50), r g ate =10 , v cc =15v 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 37. ir21084s vs. frequency (irfbc20), r gate =33 , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 38. ir21084s v s. frequency (irfbc30), r gate =22 , v cc =15v
20 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 1 40v 70v 0v figure 39. ir21084s vs. frequency (irfbc40), r gate =15 , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) figure 40. ir21084s vs. frequency (irfpe50), r gate =10 , v cc =15v 1 4 0 v 7 0v 0v
www.irf.com 21 ir2108 ( 4 ) ( s ) & (pbf) 01-6014 01-3003 01 (ms-001ab) 8-lead pdip 01-6027 01-0021 11 (ms-012aa) 8-lead soic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 4 3 12 4. outline conforms t o jedec out line ms-012aa. not es : 1. dimens ioning & tole rancing per as me y14.5m-1994. 2. cont rol ling di me ns i on: mi llime t e r 3. dimensions are s hown in millimet ers [inche s]. 7 k x 45 8x l 8x c y footprint 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 8x 1.78 [.070] 5 dime ns ion doe s not incl ude mold pr ot rus ions . 6 dime ns ion doe s not incl ude mold pr ot rus ions . mold protrus ions not t o e xceed 0.25 [.010]. 7 dime ns ion is t h e le ngt h of l e ad f or s ol de r ing t o a subs trat e. mold protrus ions not t o e xceed 0.15 [.006]. 0.25 [.010] c a b e1 a a1 8x b c 0.10 [.004] e1 d e y b a a1 h k l .189 .1497 0 .013 .050 b as ic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 bas ic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 min max millimeters inches min max dim 8 e c .0075 .0098 0.19 0.25 .025 b as ic 0.635 bas ic case outlines
22 www.irf.com ir2108 ( 4 ) ( s ) & (pbf) 01-6010 01-3002 03 (ms-001ac) 14-lead pdip 01-6019 01-3063 00 (ms-012ab) 14-lead soic (narrow body)
www.irf.com 23 ir2108 ( 4 ) ( s ) & (pbf) basic part (non-lead free) lead-free part 8-lead pdip ir2108 order ir2108 8-lead pdip ir2108 order ir2108pbf 8-lead soic ir2108s order ir2108s 8-lead soic ir2108s order ir2108spbf 14-lead pdi p ir21084 order ir21084 14-lead pdip ir21084 order ir21084pbf 14-lead soi c ir21084s order ir21084s 14-lead soi c ir21084s order IR21084SPBF order information this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s website. data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/08/04


▲Up To Search▲   

 
Price & Availability of IR21084SPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X